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1. Introduction
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MicroMicro--instabilities in tokamak plasmasinstabilities in tokamak plasmas
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¸ Various zonal flow instabilities
(Diamond,IAEA98, Chen,POP00, Rogers,PRL00)

¸ Nonlinear upshift of effective critical ITG by zonal flows
(Dimits,POP00)

¸ Linear damping mechanism of zonal flows
(Rosenbluth-Hinton,PRL98)

Toroidal ITG turbulence simulation with and without zonal flows
(Lin,Science98, Diamond,NF01)

(C)
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Structure formations in microscopic ETG turbulenceStructure formations in microscopic ETG turbulence

Safety factor q(
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¸ Linear ballooning theory with equilibrium profile shear effects
(Connor,PRL93, Romanelli,PFB93, Kim,PRL94)

¸ Shearing effects of equilibrium ExB flows on size scaling
(Garbet,POP96, Waltz,POP02)

¸ Turbulence spreading into less unstable or stable regions
(Lin,POP04, Hahm,PPCF04, Waltz,POP05)

Plasma size scaling of ITG turbulence Plasma size scaling of ITG turbulence 
Transition of plasma size scaling from Bohm to gyro-Bohm
(Lin,PRL02, Candy,POP04)
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2. Gyrokinetic model







11

Primitive kinetic model of weakly coupled plasmaPrimitive kinetic model of weakly coupled plasma

¸ Vlasov-Poisson system in canonical coordinates ZCC=(t;q,p)

– Continuity equation of f transported by Hamiltonian flows in 
6D phase space

– Spatio-temporal scales are given by ~λDe and ~ωpe

Very expensive model for studying tokamak micro-turbulence
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Particle motion in guidingParticle motion in guiding--centre coordinates centre coordinates 
¸ Lagrangian in canonical coordinates ZCC=(t;q,p)

¸ Guiding-centre coordinates ZGY

¸ Lagrangian in ZGC=(t;RGC,v//GC,μGC,αGC)
(Littlejohn, J. Math. Phys.79, PF81, J. Plasma Phys.83)

– Fast α-dependence in HGC (μGC is approximate invariant)
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Reduction of problem to 5D phase space Reduction of problem to 5D phase space 
¸ Find gyro-centre coordinates ZGY using near identity transformations

(Cary-Littlejohn,Ann. Phys.83, Brizard-Hahm,Rev. Mod. Phys.06)
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Gyrokinetic equationGyrokinetic equation
¸ Gyrokinetic equation

¸ Conservative form of gyrokinetic equation

¸ Phase space conservation

Continuity equation of f transported by incompressible Hamiltonian 
flows in 5D phase space (4D:R,v// + 1D parameter:μ)
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GK Poisson equation for selfGK Poisson equation for self--consistent fieldsconsistent fields
¸ fGC obtained by pull-back transform 

¸ Poisson equation in ZCC

– 2nd
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First principles in gyrokinetic equationsFirst principles in gyrokinetic equations

¸ Conservation of phase space volume

¸ Conservation of Casimir invariants C( f ) in Liouville equation

– particle number f, kinetic entropy f log( f ), f 2, etc…
¸ Energy conservation 
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Summary of modern gyrokinetic theorySummary of modern gyrokinetic theory
¸ Gyrokinetic Vlasov-Poisson system

– Spatio-temporal scales are given as ~ρi and ω << Ωi

– Problem is reduced to 5D (4D hyperbolic PDE + 1D parameter)
– Keeps important kinetic effects (FLR, Landau resonance, etc…)
– Keeps all the first principles which the original system has

¸ Phase space conservation
¸ Conservation of particle number, kinetic entropy, etc…
¸ Total energy conservation
Important for avoiding spurious phenomena
Useful for checking the quality of numerical simulations
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3. Various approcheds in gyrokinetic simultion s
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Coordinate system in tokamak configurationCoordinate system in tokamak configuration
¸ Tokamak configuration written using poloidal flux function ψ

¸ Field aligned flute perturbation with k//~0 (gyrokinetic ordering)

– Components far from m~nq suffer from Landau damping 
¸ Quasi 2D representation of flute perturbation

– Field-line-following coordinates
(ψ,
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Parallel performance of mesh code on Altix3700Bx2Parallel performance of mesh code on Altix3700Bx2
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From From KlimontovichKlimontovich EqEq. to Vlasov . to Vlasov EqEq..
¸ Introduce statistical average < > for Klimontovich distribution

¸ Statistical average of Klimontovich equation

¸ Lowest order equation in BBGKY hierarchy

– g2 is ~O(εd) effect in discreteness parameter εd=1/(n0λD
3)<<1
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Vlasov limit and super particlesVlasov limit and super particles
¸ Lowest order equation in BBGKY hierarchy

¸ Rosenbluth chopping with e
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Reduce enhanced collisions with finite size particlesReduce enhanced collisions with finite size particles
¸ Newton-Poisson system for PIC simulation

– Shape factor SSP works as low-pass Fourier filter
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Reduce particle weight with Reduce particle weight with δδff PIC methodPIC method
¸ Equation system of δf PIC simulation
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Comparisons of PIC and Comparisons of PIC and δδff PIC simulationsPIC simulations
¸ Gyrokinetic simulations of ion temperature gradient driven turbulence

G3D code (Idomura,POP00), Lx=Ly=16ρti, Lz=8000ρti, Lx/Ln=0, Lx/Lti=0.42

– δf PIC converges significantly faster than conventional PIC
– Optimization of sampling points accelerates convergence

¸ δf-mxl(33M)
δf-PIC, Maxwellian KSP

~9.9x103 particles/cell-mode
¸ δf-mxl(4M)
δf-PIC, Maxwellian KSP

~1.2x103 particles/cell-mode
¸ δf-opt(4M)
δf-PIC, Optimised KSP

~1.2x103 particles/cell-mode
¸ full-f(268M)
PIC, Maxwellian KSP

~8x104 particles/cell-mode

Time histories of turbulent field energy
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Summary of Particle/Lagrangian approachSummary of Particle/Lagrangian approach

¸ PIC simulation model
– Many body system with heavier particles enhance collisions
– Enhanced collisions are reduced by finite size particle model

¸ δf PIC simulation model
– Monte-Carlo sampling of δf using marker particles
– Particle weight and collisions reduced by δf /f0~0.01
– Significantly faster convergence than conven 150 ,Tj
E0scn
BT
/C2_0 1 Tf
0 Tc 0 Tw 0 18 -18 0 D 7 el
-0.000243.6 92.27f0243.6 Bnb  1o~7/5sT
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5. Mesh/Eulerian approach 
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Vlasov simulation based on mesh approachesVlasov simulation based on mesh approaches
¸ Vlasov-Poisson system for electrostatic one component plasma

– All the dynamics determined by f1 and φ1

¸ Semi-Lagrangian approach: mapping of f using Df/Dt=0

– Splitting method, Semi-Lagrangian method, CIP method, etc
(Cheng,JCP76, Sonnendrucker,JCP99, Nakamura,JCP99)

¸
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Splitting scheme (ChengSplitting scheme (Cheng--Knorr,JCP76)Knorr,JCP76)
¸ Vlasov equation is given by separable Hamiltonian

– Hamilton’s Eq. consists of free motions in x and v
¸ Mapping is splitted into three free motions

– Each free motions are canonical transform
– 2nd order symplectic integrator 
– Semi-Lagrangian method for non-separable Hamiltonian

(Brunetti,CPC04, Grandgirard,JCP06)
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¸ Phase mixing leading to fine scale structures in turbulent flows

¸ Aliasing errors in resolving fine scales with finite grid widths

– Aliasing errors are inevitable in finite difference approach
–
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Dissipative finite difference operatorDissipative finite difference operator
¸ Finite difference approximation for 1D advection problem

– Centered finite difference is non-dissipative, but its dispersive 
errors do not suppress numerical oscillations

– Dissipative error in upwind finite difference smear out not 
only numerical oscillations but also solution itself

– Various less dissipative higher order schemes are available
(Candy,JCP03, Watanabe,NF06, Xu,IAEA06)
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¸ Finite difference method for Poisson bracket operator
(Arakawa,JCP66, Morinishi,JCP97)
– Suppress numerical oscillations by conserving f and f 2

¸ Finite difference operators proposed by Arakawa and Morinishi

– Both operators are conservative for {f,H} and f{f,H}
– Morinishi scheme can be extended to higher dimension
(Idomura,JCP07)

NonNon--dissipative finite difference operatordissipative finite difference operator
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NonNon--dissipative gyrokinetic simulationdissipative gyrokinetic simulation

¸ ITG turbulence simulation
G5D code (Idomura,JCP07)

– FVM: 2nd order centered
finite difference
– Morinishi: 2nd order
Morinishi scheme

(a) Field energy

(b) Error of L1 norm (c) Error of L2 norm∫= ZfdN 6 ∫= ZdfM 62
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Comparison between Vlasov and PIC simulationsComparison between Vlasov and PIC simulations

¸ Gyrokinetic simulations of slab ion temperature gradient turbulence
G3D/G5D (Idomura,POP00,JCP07), Lx=2Ly=32ρti, Lz=8000ρti, Lx/Ln=0, Lx/Lti=0.86

– Results show quantitative agreement up to saturation phase
– PIC simulation show spurious heating due to numerical noise
– Secular accumulation of error is not observed in Vlasov simulation

(Memory usage was ~5 times larger in Vlasov simulation) 

(a) Vlasov code (~255 CPU hours) (b) PIC code (~211 CPU hours)

~2500 particles/cell-mode

field energy

total energy

kinetic energy
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Summary of Mesh/Summary of Mesh/EulerianEulerian approachapproach

¸ Semi-Lagrangian approach
– Vlasov simulation was initiated by splitting method
– Splitting method works as symplectic integrator for Vlasov Eq.
– Semi-Lagrangian method is used for Gyrokinetic Eq.

¸ Dissipative upwind finite difference approach
– Suppress numerical oscillations by numerical dissipation
– Less dissipative higher order schemes are available

¸ Non-dissipative finite difference approach
– Suppress numerical oscillations by conserving f and 
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6. Collisionless gyrokinetic simulation 
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Collisionless gyrokinetic simulation?Collisionless gyrokinetic simulation?
¸ Collisionless gyrokinetic equation

– Similar to Euler equation which describes ideal fluids (Re=∞)
– Where does turbulent field energy go?

¸ One possible scenario in micro-turbulence simulations
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Phase mixing due to parallel streaming motion Phase mixing due to parallel streaming motion 

¸ Free streaming starting from f(x,v,0)=(2π)-1/2exp(-v2/2)cos(kx)

– n damps away with conserving f
– Fine scale structures are continuously produced
– In reality, weak collisions,         , smear out fine structures
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Entropy balance relation in Entropy balance relation in gyrokienticgyrokientic equationequation
¸ Slab gyrokinetic equation (drop O(ρ*), local limit                       )

¸ Balance relation of fluctuation entropy δS
(Lee,PF88, Krommes,POP94, Sugama,POP96)
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Asymptotic behavior of Asymptotic behavior of QQ in weak collisional limitin weak collisional limit
¸ Relevant steady state determined by Q+D=0

– Is Q determined by forcing (gradients) or dissipation?
¸ Collisionality ν dependence of diffusivity χ in weak collisional limit

– Collisionless simulation is possible with finite but small enough 
numerical or physical dissipation

– Convergence study for numerical dissipation is important
Grid number, particle number, hyper diffusivity, etc…Tatios re
f
/Shape <<4MCID 3 >206.
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Summary of entropy balance relationSummary of entropy balance relation

¸ Phase mixing in velocity space
– Parallel streaming continuously produce fine scale structures
– n damps away with conserving f (phase mixing damping)
– Discrete system shows spurious recurrence effect
– To avoid recurrence numerical/physical dissipation is needed

¸ Collisionless limit in gyrokinetic simulations
– Steady solution of entropy balance is given by Q+D=0
– χ approaches to collisionless limit asymptotically with
– Forcing determines heat flux Q at weakly collisional regime  
– Collisionless simulation is possible with finite but small 

enough numerical or physical dissipation

0→ν
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